Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175.682
Filtrar
1.
J Ovarian Res ; 17(1): 78, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600539

RESUMEN

BACKGROUND: This study investigated the association between Anti-Müllerian Hormone (AMH) and relevant metabolic parameters and assessed its predictive value in the clinical diagnosis of polycystic ovarian syndrome (PCOS). METHODS: A total of 421 women aged 20-37 years were allocated to the PCOS (n = 168) and control (n = 253) groups, and their metabolic and hormonal parameters were compared. Spearman correlation analysis was conducted to investigate associations, binary logistic regression was used to determine PCOS risk factors, and receiver operating characteristic (ROC) curves were generated to evaluate the predictive value of AMH in diagnosing PCOS. RESULTS: The PCOS group demonstrated significantly higher blood lipid, luteinizing hormone (LH), and AMH levels than the control group. Glucose and lipid metabolism and hormonal disorders in the PCOS group were more significant than in the control group among individuals with and without obesity. LH, TSTO, and AMH were identified as independent risk factors for PCOS. AMH along with LH, and antral follicle count demonstrated a high predictive value for diagnosing PCOS. CONCLUSION: AMH exhibited robust diagnostic use for identifying PCOS and could be considered a marker for screening PCOS to improve PCOS diagnostic accuracy. Attention should be paid to the effect of glucose and lipid metabolism on the hormonal and related parameters of PCOS populations.


Asunto(s)
Hormona Antimülleriana , Síndrome del Ovario Poliquístico , Femenino , Humanos , Hormona Antimülleriana/sangre , Glucosa/metabolismo , Hormona Luteinizante/sangre , Síndrome del Ovario Poliquístico/sangre , Síndrome del Ovario Poliquístico/metabolismo , Síndrome del Ovario Poliquístico/patología , Sensibilidad y Especificidad , Adulto
2.
Microb Cell Fact ; 23(1): 106, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600576

RESUMEN

BACKGROUND: The textile industry has several negative impacts, mainly because it is based on a linear business model that depletes natural resources and produces excessive amounts of waste. Globally, about 75% of textile waste is disposed of in landfills and only 25% is reused or recycled, while less than 1% is recycled back into new garments. In this study, we explored the valorisation of cotton fabric waste from an apparel textile manufacturing company as valuable biomass to produce lactic acid, a versatile chemical building block. RESULTS: Post-industrial cotton patches were pre-treated with the aim of developing a methodology applicable to the industrial site involved. First, a mechanical shredding machine reduced the fabric into individual fibres of maximum 35 mm in length. Afterwards, an alkaline treatment was performed, using NaOH at different concentrations, including a 16% (w/v) NaOH enriched waste stream from the mercerisation of cotton fabrics. The combination of chemo-mechanical pre-treatment and enzymatic hydrolysis led to the maximum recovery yield of 90.46 ± 3.46%, corresponding to 74.96 ± 2.76 g/L of glucose released, which represents a novel valorisation of two different side products (NaOH enriched wastewater and cotton textile waste) of the textile industry. The Saccharomyces cerevisiae strain CEN.PK m850, engineered for redirecting the natural alcoholic fermentation towards a homolactic fermentation, was then used to valorise the glucose-enriched hydrolysate into lactic acid. Overall, the process produced 53.04 g/L ± 0.34 of L-lactic acid, with a yield of 82.7%, being the first example of second-generation biomass valorised with this yeast strain, to the best of our knowledge. Remarkably, the fermentation performances were comparable with the ones obtained in the control medium. CONCLUSION: This study validates the exploitation of cotton post-industrial waste as a possible feedstock for the production of commodity chemicals in microbial cell-based biorefineries. The presented strategy demonstrates the possibility of implementing a circular bioeconomy approach in manufacturing textile industries.


Asunto(s)
Residuos Industriales , Saccharomyces cerevisiae , Fermentación , Ácido Láctico , Hidrólisis , Hidróxido de Sodio , Textiles , Glucosa
3.
Endocr Regul ; 58(1): 91-100, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38656254

RESUMEN

Objective. Glucose and glutamine supply as well as serine synthesis and endoplasmic reticulum (ER) stress are important factors of glioblastoma growth. Previous studies showed that the knockdown of ERN1 (ER to nucleus signaling 1) suppressed glioblastoma cell proliferation and modified the sensitivity of numerous gene expressions to nutrient deprivations. The present study is aimed to investigate the impact of glucose and glutamine deprivations on the expression of serine synthesis genes in U87MG glioblastoma cells in relation to ERN1 knockdown with the intent to reveal the role of ERN1 signaling pathway on the ER stress-dependent regulation of these gene expressions. Clarification of the regulatory mechanisms of serine synthesis is a great significance for glioblastoma therapy. Methods. The control U87MG glioblastoma cells (transfected by empty vector) and ERN1 knockdown cells (transfected by dominant-negative ERN1) were exposed under glucose and glutamine deprivation conditions for 16 h. RNA was extracted from cells and reverse transcribed. The expression level of PHGDH (phosphoglycerate dehydrogenase), PSAT1 (phosphoserine amino-transferase 1), PSPH (phosphoserine phosphatase), ATF4 (activating transcription factor 4), and SHMT1 (serine hydroxymethyltransferase 1) genes was studied by real-time qPCR and normalized to ACTB. Results. It was found that the expression level of genes responsible for serine synthesis such as PHGDH, PSAT1, PSPH, and transcription factor ATF4 was up-regulated in U87MG glioblastoma cells under glucose and glutamine deprivations. Furthermore, inhibition of ERN1 significantly enhances the impact of glucose and especially glutamine deprivations on these gene expressions. At the same time, the expression of the SHMT1 gene, which is responsible for serine conversion to glycine, was down-regulated in both nutrient deprivation conditions with more significant changes in ERN1 knockdown glioblastoma cells. Conclusion. Taken together, the results of present study indicate that the expression of genes responsible for serine synthesis is sensitive to glucose and glutamine deprivations in gene-specific manner and that suppression of ERN1 signaling significantly modifies the impact of both glucose and glutamine deprivations on PHGDH, PSAT1, PSPH, ATF4, and SHMT1 gene expressions and reflects the ERN1-mediated genome reprograming introduced by nutrient deprivation condition.


Asunto(s)
Endorribonucleasas , Regulación Neoplásica de la Expresión Génica , Glioblastoma , Glucosa , Glutamina , Fosfoglicerato-Deshidrogenasa , Monoéster Fosfórico Hidrolasas , Proteínas Serina-Treonina Quinasas , Serina , Transaminasas , Humanos , Glioblastoma/genética , Glioblastoma/metabolismo , Serina/metabolismo , Serina/biosíntesis , Glucosa/metabolismo , Línea Celular Tumoral , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Glutamina/metabolismo , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Fosfoglicerato-Deshidrogenasa/genética , Fosfoglicerato-Deshidrogenasa/metabolismo , Transducción de Señal , Glicina Hidroximetiltransferasa/genética , Glicina Hidroximetiltransferasa/metabolismo , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Estrés del Retículo Endoplásmico/genética , Estrés del Retículo Endoplásmico/efectos de los fármacos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Técnicas de Silenciamiento del Gen , Antígenos de Histocompatibilidad Menor/genética , Antígenos de Histocompatibilidad Menor/metabolismo
4.
Mol Biol Rep ; 51(1): 567, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656394

RESUMEN

BACKGROUND: Metabolic plasticity gives cancer cells the ability to shift between signaling pathways to facilitate their growth and survival. This study investigates the role of glucose deprivation in the presence and absence of beta-hydroxybutyrate (BHB) in growth, death, oxidative stress and the stemness features of lung cancer cells. METHODS AND RESULTS: A549 cells were exposed to various glucose conditions, both with and without beta-hydroxybutyrate (BHB), to evaluate their effects on apoptosis, mitochondrial membrane potential, reactive oxygen species (ROS) levels using flow cytometry, and the expression of CD133, CD44, SOX-9, and ß-Catenin through Quantitative PCR. The activity of superoxide dismutase, glutathione peroxidase, and malondialdehyde was assessed using colorimetric assays. Treatment with therapeutic doses of BHB triggered apoptosis in A549 cells, particularly in cells adapted to glucose deprivation. The elevated ROS levels, combined with reduced levels of SOD and GPx, indicate that oxidative stress contributes to the cell arrest induced by BHB. Notably, BHB treatment under glucose-restricted conditions notably decreased CD133 expression, suggesting a potential inhibition of cell survival through the downregulation of CD133 levels. Additionally, the simultaneous decrease in mitochondrial membrane potential and increase in ROS levels indicate the potential for creating oxidative stress conditions to impede tumor cell growth in such environmental settings. CONCLUSION: The induced cell death, oxidative stress and mitochondria impairment beside attenuated levels of cancer stem cell markers following BHB administration emphasize on the distinctive role of metabolic plasticity of cancer cells and propose possible therapeutic approaches to control cancer cell growth through metabolic fuels.


Asunto(s)
Ácido 3-Hidroxibutírico , Apoptosis , Glucosa , Neoplasias Pulmonares , Potencial de la Membrana Mitocondrial , Mitocondrias , Estrés Oxidativo , Especies Reactivas de Oxígeno , Humanos , Estrés Oxidativo/efectos de los fármacos , Glucosa/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/tratamiento farmacológico , Células A549 , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Ácido 3-Hidroxibutírico/farmacología , Especies Reactivas de Oxígeno/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Antígeno AC133/metabolismo , Antígeno AC133/genética
5.
Plant Cell Rep ; 43(5): 131, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656568

RESUMEN

KEY MESSAGE: The sugar supply in the medium affects the apical hook development of Arabidopsis etiolated seedlings. In addition, we provided the mechanism insights of this process. Dicotyledonous plants form an apical hook structure to shield their young cotyledons from mechanical damage as they emerge from the rough soil. Our findings indicate that sugar molecules, such as sucrose and glucose, are crucial for apical hook development. The presence of sucrose and glucose allows the apical hooks to be maintained for a longer period compared to those grown in sugar-free conditions, and this effect is dose-dependent. Key roles in apical hook development are played by several sugar metabolism pathways, including oxidative phosphorylation and glycolysis. RNA-seq data revealed an up-regulation of genes involved in starch and sucrose metabolism in plants grown in sugar-free conditions, while genes associated with phenylpropanoid metabolism were down-regulated. This study underscores the significant role of sugar metabolism in the apical hook development of etiolated Arabidopsis seedlings.


Asunto(s)
Arabidopsis , Regulación de la Expresión Génica de las Plantas , Plantones , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/metabolismo , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Plantones/genética , Azúcares/metabolismo , Sacarosa/metabolismo , Glucosa/metabolismo , Etiolado , Metabolismo de los Hidratos de Carbono , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cotiledón/metabolismo , Cotiledón/crecimiento & desarrollo , Cotiledón/genética
6.
Signal Transduct Target Ther ; 9(1): 103, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38664368

RESUMEN

Obesity is one of the diseases with severe health consequences and rapidly increasing worldwide prevalence. Understanding the complex network of food intake and energy balance regulation is an essential prerequisite for pharmacological intervention with obesity. G protein-coupled receptors (GPCRs) are among the main modulators of metabolism and energy balance. They, for instance, regulate appetite and satiety in certain hypothalamic neurons, as well as glucose and lipid metabolism and hormone secretion from adipocytes. Mutations in some GPCRs, such as the melanocortin receptor type 4 (MC4R), have been associated with early-onset obesity. Here, we identified the adhesion GPCR latrophilin 1 (ADGRL1/LPHN1) as a member of the regulating network governing food intake and the maintenance of energy balance. Deficiency of the highly conserved receptor in mice results in increased food consumption and severe obesity, accompanied by dysregulation of glucose homeostasis. Consistently, we identified a partially inactivating mutation in human ADGRL1/LPHN1 in a patient suffering from obesity. Therefore, we propose that LPHN1 dysfunction is a risk factor for obesity development.


Asunto(s)
Obesidad , Receptores Acoplados a Proteínas G , Receptores de Péptidos , Obesidad/genética , Obesidad/metabolismo , Obesidad/patología , Humanos , Animales , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Ratones , Receptores de Péptidos/genética , Receptores de Péptidos/metabolismo , Metabolismo Energético/genética , Glucosa/metabolismo , Glucosa/genética
7.
J Diabetes ; 16(5): e13544, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38664885

RESUMEN

As a sensor, glucokinase (GK) controls glucose homeostasis, which progressively declines in patients with diabetes. GK maintains the equilibrium of glucose levels and regulates the homeostatic system set points. Endocrine and hepatic cells can both respond to glucose cooperatively when GK is activated. GK has been under study as a therapeutic target for decades due to the possibility that cellular GK expression and function can be recovered, hence restoring glucose homeostasis in patients with type 2 diabetes. Five therapeutic compounds targeting GK are being investigated globally at the moment. They all have distinctive molecular structures and have been clinically shown to have strong antihyperglycemia effects. The mechanics, classification, and clinical development of GK activators are illustrated in this review. With the recent approval and marketing of the first GK activator (GKA), dorzagliatin, GKA's critical role in treating glucose homeostasis disorder and its long-term benefits in diabetes will eventually become clear.


Asunto(s)
Diabetes Mellitus Tipo 2 , Glucoquinasa , Homeostasis , Humanos , Glucoquinasa/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Activadores de Enzimas/uso terapéutico , Activadores de Enzimas/farmacología , Hipoglucemiantes/uso terapéutico , Hipoglucemiantes/farmacología , Glucemia/metabolismo , Animales , Glucosa/metabolismo
8.
Lipids Health Dis ; 23(1): 107, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622624

RESUMEN

BACKGROUND: Postoperative delirium (POD) is more prevalent among elderly patients with type 2 diabetes mellitus (T2DM). Insulin resistance (IR) can be assessed using the triglyceride-glucose (TyG) index, a novel biomarker. This study aims to investigate the predictive potential of the TyG index for POD in elderly patients with T2DM. MATERIALS AND METHODS: Elderly patients (≥ 65) with T2DM who underwent non-neurosurgery and non-cardiac surgery were enrolled. Univariate and multivariate logistic regression analyses were conducted to assess the association between the TyG index and POD. Additionally, subgroup analyses were performed to compare the sex-specific differences in the predictive ability of the TyG index for POD. RESULTS: A total of 4566 patients were included in this retrospective cohort. The receiver operating characteristic (ROC) curve analysis determined the optimal cut-off value for the TyG index to be 8.678. In the univariate model, a TyG index > 8.678 exhibited an odds ratio (OR) of 1.668 (95% CI: 1.210-2.324, P = 0.002) for predicting POD. In the multivariate regression models, the ORs were 1.590 (95% CI: 1.133-2.252, P < 0.008), 1.661 (95% CI: 1.199-2.325, P < 0.003), and 1.603 (95% CI: 1.137-2.283, P = 0.008) for different models. Subgroup analyses demonstrated that the predictive ability of the TyG index was more pronounced in females compared to males. CONCLUSION: The TyG index shows promise as a novel biomarker for predicting the occurrence of POD in elderly surgical patients with T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Delirio del Despertar , Anciano , Femenino , Masculino , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Estudios Retrospectivos , Glucosa , Triglicéridos , Biomarcadores , Glucemia , Factores de Riesgo
9.
Sci Rep ; 14(1): 9018, 2024 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641685

RESUMEN

Cyperus rotundus rhizomes have been used in longevity remedies in Thailand for nourishing good health, which led us to investigate the effect on energy homeostasis, especially glucose utilization in myotubes and adipocytes, and on inhibition of lipogenesis in adipocytes. The results showed that an ethyl acetate extract of C. rotundus rhizomes (ECR) containing 1.61%w/w piceatannol, with a half-maximal concentration of 17.76 ± 0.03 µg/mL in 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, caused upregulation and cell-membrane translocation of glucose transporters GLUT4 and 1 in L6 myotubes but downregulation and cytoplasmic localization of GLUT4 expression in 3T3-L1 adipocytes and was related to the p-Akt/Akt ratio in both cells, especially at 100 µg/mL. Moreover, ECR (25-100 µg/mL) significantly inhibited lipid accumulation via Adenosine Monophosphate-Activated Protein Kinase (AMPK), Acetyl CoA Carboxylase (ACC), and Glycogen Synthase Kinase (GSK) pathways. Its immunoblot showed increased expression of p-AMPKα/AMPKα and p-ACC/ACC but decreased expression of p-Akt/Akt and p-GSK3ß/GSK3ß in 3T3-L1 adipocytes. Moreover, the decreased expression of the adipogenic effectors, perilipin1 and lipoprotein lipase, in ECR-incubated adipocytes (50 and 100 µg/mL) indicated reduced de novo lipogenesis. Our study elucidated mechanisms of C. rotundus that help attenuate glucose tolerance in skeletal muscle and inhibit lipid droplet accumulation in adipose tissue.


Asunto(s)
Cyperus , Proteínas Proto-Oncogénicas c-akt , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Adipogénesis , Glucosa/metabolismo , Adipocitos/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Células 3T3-L1
10.
BMC Cardiovasc Disord ; 24(1): 216, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643093

RESUMEN

BACKGROUND: Acute kidney injury (AKI) in patients with acute myocardial infarction (AMI) often indicates a poor prognosis. OBJECTIVE: This study aimed to investigate the association between the TyG index and the risk of AKI in patients with AMI. METHODS: Data were taken from the Medical Information Mart for Intensive Care (MIMIC) database. A 1:3 propensity score (PS) was set to match patients in the AKI and non-AKI groups. Multivariate logistic regression analysis, restricted cubic spline (RCS) regression and subgroup analysis were performed to assess the association between TyG index and AKI. RESULTS: Totally, 1831 AMI patients were included, of which 302 (15.6%) had AKI. The TyG level was higher in AKI patients than in non-AKI patients (9.30 ± 0.71 mg/mL vs. 9.03 ± 0.73 mg/mL, P < 0.001). Compared to the lowest quartile of TyG levels, quartiles 3 or 4 had a higher risk of AKI, respectively (Odds Ratiomodel 4 = 2.139, 95% Confidence Interval: 1.382-3.310, for quartile 4 vs. quartile 1, Ptrend < 0.001). The risk of AKI increased by 34.4% when the TyG level increased by 1 S.D. (OR: 1.344, 95% CI: 1.150-1.570, P < 0.001). The TyG level was non-linearly associated with the risk of AKI in the population within a specified range. After 1:3 propensity score matching, the results were similar and the TyG level remained a risk factor for AKI in patients with AMI. CONCLUSION: High levels of TyG increase the risk of AKI in AMI patients. The TyG level is a predictor of AKI risk in AMI patients, and can be used for clinical management.


Asunto(s)
Lesión Renal Aguda , Infarto del Miocardio , Humanos , Puntaje de Propensión , Lesión Renal Aguda/diagnóstico , Lesión Renal Aguda/epidemiología , Lesión Renal Aguda/etiología , Glucosa , Infarto del Miocardio/complicaciones , Infarto del Miocardio/diagnóstico , Factores de Riesgo , Triglicéridos , Glucemia
11.
Lipids Health Dis ; 23(1): 115, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643148

RESUMEN

BACKGROUND: The triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio and triglyceride-glucose (TyG) index are novel indexes for insulin resistance (IR). We aimed to evaluate associations of TG/HDL-C and TyG with arterial stiffness risk. METHODS: We enrolled 1979 participants from the Rural Chinese Cohort Study, examining arterial stiffness by brachial-ankle pulse wave velocity (baPWV). Logistic and linear regression models were employed to calculate effect estimates. For meta-analysis, we searched relevant articles from PubMed, Embase and Web of Science up to August 26, 2023. The fixed-effects or random-effects models were used to calculate the pooled estimates. We evaluated dose-response associations using restricted cubic splines. RESULTS: For cross-sectional studies, the adjusted ORs (95%CIs) for arterial stiffness were 1.12 (1.01-1.23) and 1.78 (1.38-2.30) for per 1 unit increment in TG/HDL-C and TyG. In the meta-analysis, the pooled ORs (95% CIs) were 1.26 (1.14-1.39) and 1.57 (1.36-1.82) for per 1 unit increment of TG/HDL-C and TyG. Additionally, both TG/HDL-C and TyG were positively related to PWV, with ß of 0.09 (95% CI 0.04-0.14) and 0.57 (95% CI 0.35-0.78) m/s. We also found linear associations of TG/HDL-C and TyG with arterial stiffness risk. CONCLUSIONS: High TG/HDL-C and TyG were related to increased arterial stiffness risk, indicating TG/HDL-C and TyG may be convincing predictors of arterial stiffness.


Asunto(s)
Resistencia a la Insulina , Rigidez Vascular , Humanos , Glucosa , Triglicéridos , Estudios de Cohortes , Índice Tobillo Braquial , Rigidez Vascular/fisiología , HDL-Colesterol , Estudios Transversales , Análisis de la Onda del Pulso , Resistencia a la Insulina/genética , Glucemia , Biomarcadores
12.
Cell Commun Signal ; 22(1): 234, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643181

RESUMEN

BACKGROUND: p66Shc, as a redox enzyme, regulates reactive oxygen species (ROS) production in mitochondria and autophagy. However, the mechanisms by which p66Shc affects autophagosome formation are not fully understood. METHODS: p66Shc expression and its location in the trophoblast cells were detected in vivo and in vitro. Small hairpin RNAs or CRISPR/Cas9, RNA sequencing, and confocal laser scanning microscope were used to clarify p66Shc's role in regulating autophagic flux and STING activation. In addition, p66Shc affects mitochondrial-associated endoplasmic reticulum membranes (MAMs) formation were observed by transmission electron microscopy (TEM). Mitochondrial function was evaluated by detected cytoplastic mitochondrial DNA (mtDNA) and mitochondrial membrane potential (MMP). RESULTS: High glucose induces the expression and mitochondrial translocation of p66Shc, which promotes MAMs formation and stimulates PINK1-PRKN-mediated mitophagy. Moreover, mitochondrial localized p66Shc reduces MMP and triggers cytosolic mtDNA release, thus activates cGAS/STING signaling and ultimately leads to enhanced autophagy and cellular senescence. Specially, we found p66Shc is required for the interaction between STING and LC3II, as well as between STING and ATG5, thereby regulates cGAS/STING-mediated autophagy. We also identified hundreds of genes associated several biological processes including aging are co-regulated by p66Shc and ATG5, deletion either of which results in diminished cellular senescence. CONCLUSION: p66Shc is not only implicated in the initiation of autophagy by promoting MAMs formation, but also helps stabilizing active autophagic flux by activating cGAS/STING pathway in trophoblast.


Asunto(s)
Autofagosomas , 60683 , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/metabolismo , Autofagosomas/metabolismo , Autofagia , ADN Mitocondrial/metabolismo , Trofoblastos/metabolismo , Glucosa/metabolismo , Nucleotidiltransferasas/metabolismo
13.
World J Microbiol Biotechnol ; 40(5): 155, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38581587

RESUMEN

The study aims to enhance ethanol production by Wickerhamomyces subpelliculosus ZE75 isolated from marine sediment. In addition, analyzing the kinetic parameters of ethanol production and optimization of the fermentation conditions was performed. The marine yeast isolate ZE75 was selected as the front runner ethanol-producer, with an ethanol yield of 89.77 gL-1. ZE75 was identified relying on the phenotypic and genotypic characteristics of W. subpelliculosus. The genotypic characterization based on the Internal Transcribed Spacer (ITS) sequence was deposited in the GenBank database with the accession number OP715873. The maximum specific ethanol production rate (vmax) was 0.482 gg-1 h-1 at 175 gL-1 glucose concentration, with a high accuracy of R2 0.95. The maximum growth specific rates (µmax) were 0.141 h-1 obtained at 150 gL-1 glucose concentration with R2 0.91. Optimization of the fermentation parameters such as pH and salinity has been achieved. The highest ethanol yield 0.5637 gg-1 was achieved in a 100% natural seawater-based medium. The maximum ethanol production of 104.04 gL-1 was achieved at pH 4.5 with a specific ethanol rate of 0.1669 gg-1 h-1. The findings of the present study recommend the possibility of ethanol production from a seawater-based medium on a large scale using W. subpelliculosus ZE75.


Asunto(s)
Etanol , Saccharomycetales , Levaduras , Fermentación , Glucosa
14.
Proc Natl Acad Sci U S A ; 121(16): e2318935121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38588421

RESUMEN

Glucose is required for generating heat during cold-induced nonshivering thermogenesis in adipose tissue, but the regulatory mechanism is largely unknown. CREBZF has emerged as a critical mechanism for metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver disease (NAFLD). We investigated the roles of CREBZF in the control of thermogenesis and energy metabolism. Glucose induces CREBZF in human white adipose tissue (WAT) and inguinal WAT (iWAT) in mice. Lys208 acetylation modulated by transacetylase CREB-binding protein/p300 and deacetylase HDAC3 is required for glucose-induced reduction of proteasomal degradation and augmentation of protein stability of CREBZF. Glucose induces rectal temperature and thermogenesis in white adipose of control mice, which is further potentiated in adipose-specific CREBZF knockout (CREBZF FKO) mice. During cold exposure, CREBZF FKO mice display enhanced thermogenic gene expression, browning of iWAT, and adaptive thermogenesis. CREBZF associates with PGC-1α to repress thermogenic gene expression. Expression levels of CREBZF are negatively correlated with UCP1 in human adipose tissues and increased in WAT of obese ob/ob mice, which may underscore the potential role of CREBZF in the development of compromised thermogenic capability under hyperglycemic conditions. Our results reveal an important mechanism of glucose sensing and thermogenic inactivation through reversible acetylation.


Asunto(s)
Tejido Adiposo Pardo , Glucosa , Ratones , Humanos , Animales , Glucosa/metabolismo , Tejido Adiposo Pardo/metabolismo , Acetilación , Tejido Adiposo Blanco/metabolismo , Metabolismo Energético , Obesidad/genética , Obesidad/metabolismo , Termogénesis/genética , Ratones Endogámicos C57BL , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo
15.
J Chromatogr A ; 1722: 464874, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598893

RESUMEN

Hydroxypropyl methyl cellulose (HPMC) is a type of cellulose derivative with properties that render it useful in e.g. food, cosmetics, and pharmaceutical industry. The substitution degree and composition of the ß-glucose subunits of HPMC affect its physical and functional properties, but HPMC characterization is challenging due to its high structural heterogeneity, including many isomers. In this study, comprehensive two-dimensional liquid chromatography-mass spectrometry was used to examine substituted glucose monomers originating from complete acid hydrolysis of HPMC. Resolution between the different monomers was achieved using a C18 and cyano column in the first and second LC dimension, respectively. The data analysis process was structured to obtain fingerprints of the monomers of interest. The results revealed that isomers of the respective monomers could be selectively separated based on the position of substituents. The examination of two industrial HPMC products revealed differences in overall monomer composition. While both products contained monomers with a similar degree of substitution, they exhibited distinct regioselectivity.


Asunto(s)
Derivados de la Hipromelosa , Espectrometría de Masas , Hidrólisis , Derivados de la Hipromelosa/química , Espectrometría de Masas/métodos , Cromatografía Liquida/métodos , Isomerismo , Glucosa/química , Glucosa/análisis , 60705
17.
Cell Rep ; 43(4): 114047, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38607916

RESUMEN

Using 13C6 glucose labeling coupled to gas chromatography-mass spectrometry and 2D 1H-13C heteronuclear single quantum coherence NMR spectroscopy, we have obtained a comparative high-resolution map of glucose fate underpinning ß cell function. In both mouse and human islets, the contribution of glucose to the tricarboxylic acid (TCA) cycle is similar. Pyruvate fueling of the TCA cycle is primarily mediated by the activity of pyruvate dehydrogenase, with lower flux through pyruvate carboxylase. While the conversion of pyruvate to lactate by lactate dehydrogenase (LDH) can be detected in islets of both species, lactate accumulation is 6-fold higher in human islets. Human islets express LDH, with low-moderate LDHA expression and ß cell-specific LDHB expression. LDHB inhibition amplifies LDHA-dependent lactate generation in mouse and human ß cells and increases basal insulin release. Lastly, cis-instrument Mendelian randomization shows that low LDHB expression levels correlate with elevated fasting insulin in humans. Thus, LDHB limits lactate generation in ß cells to maintain appropriate insulin release.


Asunto(s)
Secreción de Insulina , Células Secretoras de Insulina , L-Lactato Deshidrogenasa , Ácido Láctico , Humanos , Células Secretoras de Insulina/metabolismo , Animales , L-Lactato Deshidrogenasa/metabolismo , Ratones , Ácido Láctico/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Isoenzimas/metabolismo , Ciclo del Ácido Cítrico , Ratones Endogámicos C57BL , Masculino
18.
Sci Rep ; 14(1): 8950, 2024 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637574

RESUMEN

Detailed knowledge regarding the associations between intake of different types of seafood and meat and the risk of type 2 diabetes (T2D), and insight into possible mechanisms are warranted. In this study we aimed to evaluate the associations between intake of different types of seafood and meat and the subsequent risk of T2D using the Norwegian Mother, Father, and Child Cohort Study (MoBa), and furthermore, by using a mouse model to gain further insight into possible molecular mechanisms contributing to the associated metabolic changes. Women in MoBa who were free of pharmacologically treated diabetes at baseline (n = 60,777) were prospectively evaluated for incident T2D, identified on the basis of medication usages > 90 days after delivery, ascertained by the Norwegian Prescription Database. Dietary intake was obtained with a validated 255-item food frequency questionnaire which assessed habitual diet during the first 4-5 months of pregnancy. Metabolic phenotypes and plasma metabolome were investigated in female mice fed isocaloric diets with different types of seafood and meat mimicking the dietary intake in the human cohort. During maximum 10-year and mean (SD) 7.2 (1.6) years follow-up time, 681 (1.1%) women developed pharmacologically treated T2D. All statistical models identified a higher risk of T2D with increased shellfish intake, whereas no associations were observed for total seafood, fatty fish, total meat and red meat in the adjusted models. In mice, the shellfish-based western diet induced reduced glucose tolerance and insulin secretion compared to the diet based on lean fish, and we identified a number of metabolites elevated in plasma from shellfish-fed mice that correlated with glucose intolerance. Mice fed a western diet based on meat also exhibited reduced glucose tolerance in comparison to lean fish fed mice, whereas mice fed fatty fish, total seafood or red meat did not differ from lean fish fed mice. We observed a diet-specific metabolic signature in plasma demonstrating five distinct metabolite profiles in mice fed shellfish, fatty fish, total seafood/lean fish, a mixed diet and meat. In conclusion, these findings demonstrate that different types of seafood have different outcome on T2D risk. In women, intake of shellfish was associated with higher risk of T2D. In female mice, a shellfish enriched diet reduced glucose tolerance and altered the abundance of several distinct plasma metabolites correlating with glucose tolerance.


Asunto(s)
Diabetes Mellitus Tipo 2 , Dieta , Animales , Femenino , Humanos , Embarazo , Estudios de Cohortes , Diabetes Mellitus Tipo 2/etiología , Dieta Occidental , Glucosa , Carne , Estudios Prospectivos , Alimentos Marinos , Ratones
19.
Sci Adv ; 10(16): eadl1856, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38640241

RESUMEN

Continuous glucose monitoring systems (CGMs) are critical toward closed-loop diabetes management. The field's progress urges next-generation CGMs with enhanced antinoise ability, reliability, and wearability. Here, we propose a coin-sized, fully integrated, and wearable CGM, achieved by holistically synergizing state-of-the-art interdisciplinary technologies of biosensors, minimally invasive tools, and hydrogels. The proposed CGM consists of three major parts: (i) an emerging biochemical signal amplifier, the organic electrochemical transistor (OECT), improving the signal-to-noise ratio (SNR) beyond traditional electrochemical sensors; (ii) a microneedle array to facilitate subcutaneous glucose sampling with minimized pain; and (iii) a soft hydrogel to stabilize the skin-device interface. Compared to conventional CGMs, the OECT-CGM offers a high antinoise ability, tunable sensitivity and resolution, and comfort wearability, enabling personalized glucose sensing for future precision diabetes health care. Last, we discuss how OECT technology can help push the limit of detection of current wearable electrochemical biosensors, especially when operating in complicated conditions.


Asunto(s)
Técnicas Biosensibles , Diabetes Mellitus , Humanos , Automonitorización de la Glucosa Sanguínea , Glucemia , 60431 , Reproducibilidad de los Resultados , Glucosa , Diabetes Mellitus/diagnóstico
20.
BMC Microbiol ; 24(1): 128, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38641593

RESUMEN

BACKGROUND: Biofilm formation is viewed as a vital mechanism in C. glabrata pathogenesis. Although, it plays a significant role in virulence but transcriptomic architecture and metabolic pathways governing the biofilm growth mode of C. glabrata remain elusive. The present study intended to investigate the genes implicated in biofilm growth phase of C. glabrata through global transcriptomic approach. RESULTS: Functional analysis of Differentially expressed genes (DEGs) using gene ontology and pathways analysis revealed that upregulated genes are involved in the glyoxylate cycle, carbon-carbon lyase activity, pre-autophagosomal structure membrane and vacuolar parts whereas, down- regulated genes appear to be associated with glycolysis, ribonucleoside biosynthetic process, ribosomal and translation process in the biofilm growth condition. The RNA-Seq expression of eight selected DEGs (CgICL1, CgMLS1, CgPEP1, and CgNTH1, CgERG9, CgERG11, CgTEF3, and CgCOF1) was performed with quantitative real-time PCR (RT-qPCR). The gene expression profile of selected DEGs with RT-qPCR displayed a similar pattern of expression as observed in RNA-Seq. Phenotype screening of mutant strains generated for genes CgPCK1 and CgPEP1, showed that Cgpck1∆ failed to grow on alternative carbon substrate (Glycerol, Ethanol, Oleic acid) and similarly, Cgpep1∆ unable to grow on YPD medium supplemented with hydrogen peroxide. Our results suggest that in the absence of glucose, C. glabrata assimilate glycerol, oleic acid and generate acetyl coenzyme-A (acetyl-CoA) which is a central and connecting metabolite between catabolic and anabolic pathways (glyoxylate and gluconeogenesis) to produce glucose and fulfil energy requirements. CONCLUSIONS: The study was executed using various approaches (transcriptomics, functional genomics and gene deletion) and it revealed that metabolic plasticity of C. glabrata (NCCPF-100,037) in biofilm stage modulates its virulence and survival ability to counter the stress and may promote its transition from commensal to opportunistic pathogen. The observations deduced from the present study along with future work on characterization of the proteins involved in this intricate process may prove to be beneficial for designing novel antifungal strategies.


Asunto(s)
Candida glabrata , Ácido Oléico , Candida glabrata/genética , Candida glabrata/metabolismo , Ácido Oléico/metabolismo , Carbono/metabolismo , Glicerol , Antifúngicos/metabolismo , Estrés Oxidativo , Biopelículas , Glucosa/metabolismo , Glioxilatos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...